Orolingual angioedema after thrombolysis is not associated with insular cortex ischemia on pre-thrombolysis CT

João Pinho a,*, José Nuno Alves a, Liliana Oliveira c, Sara Pereira c, Joana Barros c, Célia Machado a, José Manuel Amorim b, Ana Filipa Santos a, Manuel Ribeiro d, Carla Ferreira a

a Neurology Department, Hospital de Braga. Sete Fontes, São Victor, 4710-243 Braga, Portugal
b Internal Medicine Department, Unidade de Famalicão, Centro Hospitalar do Médio Ave. Rua Cupertino de Miranda, 4761-917 Vila Nova de Famalicão, Portugal
c Neurology Department, Hospital de Braga. Sete Fontes, São Victor, 4710-243 Braga, Portugal
d Neuroradiology Department, Centro Hospitalar de Vila Nova de Gaia. R. Dr. Francisco Sá Carneiro, 4400-129 Vila Nova de Gaia, Portugal

Corresponding author.⁎
E-mail addresses: João.Pinho@hospitaldebraga.pt (J. Pinho), jose.nuno.alves@gmail.com (J.N. Alves), liliana.oliveira.medicina@gmail.com (L. Oliveira), saracpl86@gmail.com (S. Pereira), joanabarros17@gmail.com (J. Barros), carinamachado@gmail.com (C. Machado), joemamorim@gmail.com (J.M. Amorim), filipasantos@hotmail.com (A.F. Santos), mgribeiro@gmail.com (M. Ribeiro), carla.m.cferreira@gmail.com (C. Ferreira).

1. Introduction

Orolingual angioedema (OA) is a well known early complication of treatment with alteplase in ischemic stroke patients. Our aim was to study risk factors for OA in these patients, namely insular cortex ischemia. Methods: Retrospective case-cohort study using the prospective registry of all consecutive ischemic stroke patients submitted to intravenous thrombolysis with alteplase. Clinical data was retrieved from the registry and medical records. Two independent observers evaluated early signs of insular cortex ischemia on pre-thrombolysis computed tomography (CT) and of insular cortex infarct on early follow-up imaging. Univariate and multivariate analysis were performed to identify predictors of OA. Results: Of the 659 patients with acute ischemic stroke treated with alteplase, 32 developed OA (4.9%, 95%CI = 3.3–6.6). Frequency of early signs of insular cortex ischemia on pre-thrombolysis CT and of insular cortex infarct on follow-up imaging was similar in patients with and without OA (p = 0.241 and p = 0.145, respectively). The only independent predictors of OA occurrence were female sex (OR = 5.47, 95%CI = 1.98–15.10) and angiotensin-converting enzyme inhibitor (ACE-I) use (OR = 3.87, 95%CI = 1.71–8.75). Conclusions: Female sex and ACE-I use are independent risk factors for OA occurrence in ischemic stroke patients treated with alteplase. Early signs of insular cortex ischemia on pre-thrombolysis CT were not significantly associated with OA.

© 2016 Elsevier B.V. All rights reserved.

Keywords:
Ischemic stroke
Thrombolysis
Orolingual angioedema
Computed tomography

Abstract

Objective: Orolingual angioedema (OA) is a well known early complication of treatment with alteplase in ischemic stroke patients. Our aim was to study risk factors for OA in these patients, namely insular cortex ischemia. Methods: Retrospective case-cohort study using the prospective registry of all consecutive ischemic stroke patients submitted to intravenous thrombolysis with alteplase. Clinical data was retrieved from the registry and medical records. Two independent observers evaluated early signs of insular cortex ischemia on pre-thrombolysis computed tomography (CT) and of insular cortex infarct on early follow-up imaging. Univariate and multivariate analysis were performed to identify predictors of OA. Results: Of the 659 patients with acute ischemic stroke treated with alteplase, 32 developed OA (4.9%, 95%CI = 3.3–6.6). Frequency of early signs of insular cortex ischemia on pre-thrombolysis CT and of insular cortex infarct on follow-up imaging was similar in patients with and without OA (p = 0.241 and p = 0.145, respectively). The only independent predictors of OA occurrence were female sex (OR = 5.47, 95%CI = 1.98–15.10) and angiotensin-converting enzyme inhibitor (ACE-I) use (OR = 3.87, 95%CI = 1.71–8.75). Conclusions: Female sex and ACE-I use are independent risk factors for OA occurrence in ischemic stroke patients treated with alteplase. Early signs of insular cortex ischemia on pre-thrombolysis CT were not significantly associated with OA.

© 2016 Elsevier B.V. All rights reserved.

Keywords:
Ischemic stroke
Thrombolysis
Orolingual angioedema
Computed tomography

1. Introduction

Orolingual angioedema (OA) is a well known early complication of alteplase when used for treatment of acute ischemic stroke, occurring in up to 7.9% of patients [1–3]. It consists of painless swelling of lips, tongue, face and occasionally oropharynx, occurring shortly after intravenous alteplase administration, which usually resolves during the first 24 h. Most case-control studies recognize use of angiotensin-converting enzyme inhibitors (ACE-I) as the main risk factor for occurrence of this potentially serious adverse event [1–4], and other authors found a higher frequency of insular ischemia in patients who developed angioedema [2,5]. In addition to contribute to several high order complex cerebral functions, insular cortex is known to mediate autonomic responses and it is involved in cardiac and vascular autonomic tone regulation and visceromotor control. The imbalance of sympathetic and parasympathetic control induced by insular ischemic lesions was proposed by several authors to contribute to the pathophysiology of OA [2–5]. Our aim was to study risk factors for OA occurrence in ischemic stroke patients treated with alteplase, in particular association with insular ischemia.

2. Materials and methods

We performed a retrospective case-cohort study using the prospective registry of consecutive ischemic stroke patients submitted to intravenous thrombolysis with alteplase, in the first author’s hospital, between February 2007 and January 2016. Demographic and clinical data, namely occurrence and characteristics of OA, was collected from the registry and confirmed by analysis of individual medical records. OA is routinely searched by the treating physician, as determined by our Stroke Unit protocol, every 15 min during the first hour up to 6 h. Insular cortex ischemia in baseline pre-thrombolysis computed tomography (CT) was...
independently evaluated by authors JMA and MR, and was defined as partial or total insular cortex hypodensitisation or focal swelling [6]. In-
sular cortex infarct on follow-up imaging during the first 7 days was also independently evaluated by authors JMA and MR, and was defined as new hypodense lesion involving part or the whole insular cortex in CT or insular cortex restricted diffusion lesion on magnetic resonance imaging (MRI) when available. Both observers were blinded for the occurrence of angioedema, interobserver agreement was determined using Cohen’s kappa coefficient, and interobserver disagreements were sub-
sequently settled by consensus. Groups of patients with and without an-
gioedema were compared using χ² and Mann-Whitney U tests as appropriate. Binary logistic regression was calculated using angioedema as the dependent variable and variables with p < 0.05 in univariate analy-
sis as the independent variables. Early signs of insular cortex ischemia on pre-thrombolysis CT scan was also entered in the model as an inde-
pendent variable. Statistical threshold for significance was p < 0.05. The study complies with the Helsinki Declaration and the Hospital de Braga ethics committee requirements for clinical research.

3. Results

Of the 659 patients with acute ischemic stroke submitted to intrave-
nous thrombolysis with alteplase, 32 developed OA (4.9%, 95% confi-
dence interval [95% CI] = 3.3–6.6), at a median time of 60 min after the alteplase bolus (range = 15–720). OA was strictly unilateral in 15 patients (contralateral to ischemia in 10, ipsilateral to ischemia in 5) and bilateral in 17 patients. Accompanying manifestations included bronchospasm and peripheral desaturation (n = 9), truncal or facial ur-
ticaria (n = 2) and hemodynamic instability (n = 2). The majority of patients were treated with steroids or antihistaminic drugs (n = 29) and subcutaneous adrenalin was used in 10 patients. No patient re-
quired emergent airway management and in 3 patients OA resolved spontaneously. In univariate analysis (Table 1), patients who developed OA were more frequently women, more frequently had arterial hyper-
tension and were medicated with ACE-I. Despite no differences in pre-
treatment blood pressure values in the two groups, urgent labetalol was used more frequently in the OA group. Vomiting and use of intrave-
nous metoclopromade before or during thrombolysis were also more frequent in the OA group. Frequency of early signs of insular cortex is-
chemia on pre-thrombolysis CT and frequency of insular cortex infarct on follow-up neuroimaging were similar in patients with and without OA (p = 0.241 and p = 0.145, respectively).

Interobserver agreement was good for both pre-thrombolysis insu-
lar ischemia on CT (kappa = 0.69, p < 0.001) and insular infarct in fol-
low-up imaging (kappa = 0.78, p < 0.001). In the logistic regression model (Table 2), the only independent predictors for OA were female sex (odds ratio [OR] = 5.47, 95% CI = 1.98–15.10) and current ACE-I use (OR = 3.87, 95% CI = 1.71–8.75).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Characteristics of the study population according to occurrence of orolingual angioedema.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients without orolingual angioedema (n = 627)</td>
<td>Patients with orolingual angioedema (n = 32)</td>
</tr>
<tr>
<td>Female sex</td>
<td>ponsors</td>
</tr>
<tr>
<td>Age (years)</td>
<td>74 (65–79)</td>
</tr>
<tr>
<td>Arterial hypertension</td>
<td>409 (65.2)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>128 (20.4)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>274 (43.7)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>45 (7.2)</td>
</tr>
<tr>
<td>Autoimmune co-morbidity</td>
<td>5 (0.8)</td>
</tr>
<tr>
<td>Current ACE-I use</td>
<td>139 (22.2)</td>
</tr>
<tr>
<td>Current ARB use</td>
<td>176 (28.2)</td>
</tr>
<tr>
<td>Current steroid or imunossupressor use</td>
<td>14 (2.2)</td>
</tr>
<tr>
<td>Vertebrobasilar circulation stroke</td>
<td>57 (9.1)</td>
</tr>
<tr>
<td>Admission NIHSS</td>
<td>14 (10–19)</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>145 (130–162)</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>81 (72–91)</td>
</tr>
<tr>
<td>Admission BP >185/105 mmHg</td>
<td>77 (12.5)</td>
</tr>
<tr>
<td>Urgent captopril use before/during thrombolysis</td>
<td>35 (5.6)</td>
</tr>
<tr>
<td>Urgent labetalol use before/during thrombolysis</td>
<td>57 (9.1)</td>
</tr>
<tr>
<td>Admission glucose</td>
<td>125 (108–158)</td>
</tr>
<tr>
<td>Vomiting before/during thrombolysis</td>
<td>72 (11.5)</td>
</tr>
<tr>
<td>Urgent metoclopromade use before/during thrombolysis</td>
<td>39 (62)</td>
</tr>
<tr>
<td>ASPECTS/pcASPECTS</td>
<td>9 (8–10)</td>
</tr>
<tr>
<td>Symptoms-needle time (minutes)</td>
<td>155 (115–200)</td>
</tr>
<tr>
<td>Intravenous contrast (angi-computed</td>
<td>67 (10.7)</td>
</tr>
<tr>
<td>Hyperacute endovascular revascularization</td>
<td>49 (7.8)</td>
</tr>
<tr>
<td>Early signs of insular cortex ischemia on pre-thrombolysis CT</td>
<td>202 (33.7)</td>
</tr>
<tr>
<td>Insular cortex infarct on follow-up neuroimaging</td>
<td>309 (49.3)</td>
</tr>
<tr>
<td>MRI as follow-up imaging</td>
<td>80 (12.7)</td>
</tr>
</tbody>
</table>

*Results are reported as n (%) or median (interquartile range). Pearson’s chi-squared test was used for categorical variables except where noted († Fisher’s exact test). Mann-Whitney U test was used for continuous variables. ACE-I: angiotensin-converting enzyme inhibitor. ARB: angiotensin II receptor blocker. NIHSS: National Institute of Health Stroke Scale. BP: blood pressure. ASPECTS: Alberta Stroke Program Early Computed Tomography Score. pcASPECTS: posterior circulation ASPECTS. CT: computed tomography. MRI: magnetic resonance imaging.

† Data available for 632 patients (27 patients with no available pre-thrombolysis CT for analysis).

4. Discussion

This study is one of the largest studies analyzing clinical predictors of the occurrence of OA and the largest study which performed a system-
atic, independent and blinded evaluation of occurrence of insular isch-
emic lesions on neuroimaging. Prevalence of OA in patients with acute ischemic stroke treated with alteplase was 4.9%, which is in accordance to previous studies [1–4,7]. We found no significant differences in the frequency of insular cortex ischemic lesions on pre-thrombolysis CT, and early signs of insular cortex ischemia were not independent predic-
tors of OA occurrence in multivariate analysis. The clinical significance of this finding is that early signs of insular cortex ischemia on pre-
thrombolysis CT should not be regarded as a marker of risk for OA. De-
spite the well known limitation of CT for diagnosis of very early cerebral ischemic changes, early signs of insular ischemia on CT had the higher interobserver agreement among all cerebral regions evaluated in the Al-
berta Stroke Program Early CT Score in a relevant study by Gupta et al. [8], which supports the clinical value of our findings. A recent study compared the frequency of insular infarcts in MRI in 19 patients who developed OA after thrombolysis and 77 selected patients who did not develop OA and there was no difference [4]. Despite this, these authors reported a similar frequency of small insular infarcts but a significantly higher frequency of total insular infarcts in patients with OA, which should be interpreted with caution because of the scarce number of pa-
tients with total insular infarcts. Higher frequency of insular involve-
ment in OA patients was found by Hill et al. [2], however, a non-
blinded assessment of imaging was performed by the treating physi-
cian, which could have introduced a potential imaging assessment bias. The high frequency of insular cortex ischemia in OA patients (80%) found by Werner et al., was evaluated by MRI in 15 patients with OA, however, patients without OA were not analyzed [5]. Although
we are not able to definitely exclude a possible contribution of insulin ischemia for development of alteplase-related OA, our study does not support the suggestion that insulin ischemia plays a key role in its pathophysiology.

Other case-control studies found a higher frequency of OA in women [3,5] and, in our study, female sex was an independent risk factor for OA, which is in accordance to a large cohort study of medication-related angioedema incidence [9]. The reason for this sex difference is not clear, but may include the influence of sex hormones on the regulation of inflammation and an increased T_α2 immune response in women [10], which is further supported by the female predominance of chronic urticaria, a condition with a pathophysiology closely linked to acquired angioedema [11].

Current use of ACE-I was independently associated with a 4-fold risk increase in the development of OA. This association is well known in the literature and is explained by inhibition of bradykinin metabolism by ACE-I and concomitant alteplase-mediated bradykinin generation [12] (Supplementary Fig. 1). The possibility of increased risk of OA in patients treated with angiotensin receptor blockers [13] was not confirmed in our study.

The fact that this is a single center study weakens the statistical power needed to demonstrate the association of insular ischemia and OA development, and these results need confirmation in other larger case-control multicentre studies. Another important limitation of our study is absence of pre-thrombosis MRI or perfusion imaging techniques, which could provide more accurate information on insular ischemia or insulin hyperperfusion, and absence of follow-up MRI in the majority of patients, which is more sensitive than CT for the diagnosis of recent small insular infarcts.

5. Conclusions

Orolingual angioedema occurred in 4.9% of acute ischemic stroke patients treated with alteplase and the only independent risk factors found were female sex and ACE-I use. Early signs of insular cortex ischemia in pre-thrombolysis CT were not significantly associated with orolingual angioedema occurrence.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jns.2016.07.043.

Conflicts of interest

None.

References

