Browsing by Author "Taipa, R"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Kalirin: a novel genetic risk factor for ischemic strokePublication . Krug, T; Manso, H; Gouveia, L; Sobral, J; Xavier, JM; Albergaria, I; Gaspar, G; Correia, M; Viana-Baptista, M; Simões, RN; Pinto, AN; Taipa, R; Ferreira, C; Fontes, JR; Silva, MR; Gabriel, JP; Matos, I; Lopes, G; Ferro, JM; Vicente, AM; Oliveira, SACerebrovascular and cardiovascular diseases are the leading causes of death and disability worldwide. They are complex disorders resulting from the interplay of genetic and environmental factors, and may share several susceptibility genes. Several recent studies have implicated variants of the Kalirin (KALRN) gene with susceptibility to cardiovascular and metabolic phenotypes, but no studies have yet been performed in stroke patients. KALRN is involved, among others, in the inhibition of inducible nitric oxide synthase, in the regulation of ischemic signal transduction, and in neuronal morphogenesis, plasticity, and stability. The goal of the present study was to determine whether SNPs in the KALRN region on 3q13, which includes the Ropporin gene (ROPN1), predispose to ischemic stroke (IS) in a cohort of Portuguese patients and controls. We genotyped 34 tagging SNPs in the KALRN and ROPN1 chromosomal region on 565 IS patients and 517 unrelated controls, and performed genotype imputation for 405 markers on chromosome 3. We tested the single-marker association of these SNPs with IS. One SNP (rs4499545) in the ROPN1-KALRN intergenic region and two SNPs in KALRN (rs17286604 and rs11712619) showed significant (P < 0.05) allelic and genotypic (unadjusted and adjusted for hypertension, diabetes, and ever smoking) association with IS risk. Thirty-two imputed SNPs also showed an association at P < 0.05, and actual genotyping of three of these polymorphisms (rs7620580, rs6438833, and rs11712039) validated their association. Furthermore, rs11712039 was associated with IS (0.001 < P < 0.01) in a recent well-powered genomewide association study (Ikram et al. 2009). These studies suggest that variants in the KALRN gene region constitute risk factors for stroke and that KALRN may represent a common risk factor for vascular diseases.
- Mitochondrial haplogroup H1 is protective for ischemic stroke in Portuguese patientPublication . Rosa, A; Fonseca, BV; Krug, T; Manso, H; Gouveia, L; Albergaria, I; Gaspar, G; Correia, M; Viana-Baptista, M; Simões, RM; Pinto, AN; Taipa, R; Ferreira, C; Fontes, JR; Gabriel, JP; Matos, I; Lopes, G; Ferro, JM; Vicente, AM; Oliveira, SABACKGROUND: The genetic contribution to stroke is well established but it has proven difficult to identify the genes and the disease-associated alleles mediating this effect, possibly because only nuclear genes have been intensely investigated so far. Mitochondrial DNA (mtDNA) has been implicated in several disorders having stroke as one of its clinical manifestations. The aim of this case-control study was to assess the contribution of mtDNA polymorphisms and haplogroups to ischemic stroke risk. METHODS: We genotyped 19 mtDNA single nucleotide polymorphisms (SNPs) defining the major European haplogroups in 534 ischemic stroke patients and 499 controls collected in Portugal, and tested their allelic and haplogroup association with ischemic stroke risk. RESULTS: Haplogroup H1 was found to be significantly less frequent in stroke patients than in controls (OR = 0.61, 95% CI = 0.45-0.83, p = 0.001), when comparing each clade against all other haplogroups pooled together. Conversely, the pre-HV/HV and U mtDNA lineages emerge as potential genetic factors conferring risk for stroke (OR = 3.14, 95% CI = 1.41-7.01, p = 0.003, and OR = 2.87, 95% CI = 1.13-7.28, p = 0.021, respectively). SNPs m.3010G>A, m.7028C>T and m.11719G>A strongly influence ischemic stroke risk, their allelic state in haplogroup H1 corroborating its protective effect. CONCLUSION: Our data suggests that mitochondrial haplogroup H1 has an impact on ischemic stroke risk in a Portuguese sample.
- Ryanodine myopathies without central cores-clinical, histopathologic, and genetic description of three cases.Publication . Rocha, J; Taipa, R; Melo Pires, M; Oliveira, J; Santos, R; Santos, MBACKGROUND: Mutations in ryanodine receptor 1 gene (RYR1) are frequent causes of myopathies. They classically present with central core disease; however, clinical variability and histopathologic overlap are being increasingly recognized. PATIENTS: Patient 1 is a 15-year-old girl with mild proximal, four-limb weakness from age 5, presenting with a progressive scoliosis starting at age 10. Patient 2 is an 18-year-old girl with progressively worsening muscle hypotrophy and mild proximal, four-limb weakness. She developed a rapidly progressive scoliosis from age 11 and needed surgical treatment at age 14 years. Patient 3 is an 11-year-old boy with moderate proximal limb weakness and progressive neck flexor weakness, first noticed at age 2. Muscle biopsies revealed type 1 fiber predominance (Patients 1 and 2) or abnormal type 1 fiber uniformity (Patient 3). Different RYR1 variants were identified in all patients. In Patients 1 and 3, these changes were validated as being pathogenic. CONCLUSIONS: These patients illustrate early-onset, progressive myopathies with predominant axial involvement. Histopathologic findings were abnormal but not specific for a diagnosis, particularly central core myopathy. Genetic testing helped broaden the range of phenotypes included in the RYR1-related myopathies. Our patients reinforce the need to recognize the broad histopathologic variability of RYR1-related myopathies and sometimes lack of pathognomonic findings that may reduce the diagnostic threshold of this disease. We suggest that the predominance of type 1 fibers and involvement of axial muscles may be an important element to consider the RYR1 gene as candidate.
- WNT6 is a novel oncogenic prognostic biomarker in human glioblastomaPublication . Gonçalves, CS; Vieira de Castro, J; Pojo, M; Martins, EP; Queirós, S; Chautard, E; Taipa, R; Pires, MM; Pinto, AA; Pardal, F; Custódia, C; Faria, CC; Clara, C; Reis, RM; Sousa, N; Costa, BMGlioblastoma (GBM) is a universally fatal brain cancer, for which novel therapies targeting specific underlying oncogenic events are urgently needed. While the WNT pathway has been shown to be frequently activated in GBM, constituting a potential therapeutic target, the relevance of WNT6, an activator of this pathway, remains unknown. Methods: WNT6 protein and mRNA levels were evaluated in GBM. WNT6 levels were silenced or overexpressed in GBM cells to assess functional effects in vitro and in vivo. Phospho-kinase arrays and TCF/LEF reporter assays were used to identify WNT6-signaling pathways, and significant associations with stem cell features and cancer-related pathways were validated in patients. Survival analyses were performed with Cox regression and Log-rank tests. Meta-analyses were used to calculate the estimated pooled effect. Results: We show that WNT6 is significantly overexpressed in GBMs, as compared to lower-grade gliomas and normal brain, at mRNA and protein levels. Functionally, WNT6 increases typical oncogenic activities in GBM cells, including viability, proliferation, glioma stem cell capacity, invasion, migration, and resistance to temozolomide chemotherapy. Concordantly, in in vivo orthotopic GBM mice models, using both overexpressing and silencing models, WNT6 expression was associated with shorter overall survival, and increased features of tumor aggressiveness. Mechanistically, WNT6 contributes to activate typical oncogenic pathways, including Src and STAT, which intertwined with the WNT pathway may be critical effectors of WNT6-associated aggressiveness in GBM. Clinically, we establish WNT6 as an independent prognostic biomarker of shorter survival in GBM patients from several independent cohorts. Conclusion: Our findings establish WNT6 as a novel oncogene in GBM, opening opportunities to develop more rational therapies to treat this highly aggressive tumor.