Browsing by Author "Soares, P"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Follicular thyroid carcinoma with an unusual glomeruloid pattern of growth.Publication . Cameselle-Teijeiro, J; Pardal, F; Eloy, C; Ruiz-Ponte, C; Celestino, R; Castro, P; Soares, P; Sobrinho-Simões, MWe describe an uncommon thyroid tumor in a 56-year-old woman. The widely infiltrating, angioinvasive neoplasm, 5 cm in diameter, exhibited a peculiar architectural growth pattern characterized by follicles with round to oval epithelial tufts growing within, often supported by a fibrovascular core mimicking the renal glomerulus. Colloid-empty follicles, tubular or elongated, were lined by pseudostratified tall, columnar cells with clear cytoplasm. Nuclei were round to oval, with evenly distributed, slightly coarse chromatin. Tumor cells were positive for thyroid transcription factor-1, thyroperoxidase, thyroglobulin, cytokeratin 18, Hector Battifora mesothelial cell, and vimentin. Scattered cells positive for S100, Wilms tumor 1 (WT1), and cytokeratins AE1/AE3 were found, with no reaction detected for cytokeratins 34betaE12, 5/6, 7, 19, or 20. There were PAX8-PPARgamma rearrangement and N-RAS mutation. No mutations were found for APC or BRAF genes, nor were RET/PTC rearrangements detected. Because of the distinctive histologic features, we propose naming this tumor follicular thyroid carcinoma with an unusual glomeruloid pattern of growth.
- Hotspot TERT promoter mutations are rare events in testicular germ cell tumorsPublication . Cárcano, FM; Vidal, DO; van Helvoort Lengert, A; Neto, CS; Queiroz, L; Marques, H; Baltazar, F; da Silva Martinelli, CM; Soares, P; da Silva, EC; Lopes, LF; Reis, RMThe abnormal activation of telomerase, codified by the telomerase reverse transcriptase (TERT) gene, is related to one of cancer hallmarks. Hotspot somatic mutations in the promoter region of TERT, specifically the c.-124:C>T and c.-146:C>T, were recently identified in a range of human cancers and have been associated with a more aggressive behavior. Testicular germ cell tumors frequently exhibit a good prognosis; however, the development of refractory disease is still a clinical challenge. In this study, we aim to evaluate for the first time the presence of the hotspot telomerase reverse transcriptase gene promoter mutations in testicular germ cell tumors. A series of 150 testicular germ cell tumor cases and four germ cell tumor cell lines were evaluated by PCR followed by direct Sanger sequencing and correlated with patient's clinical pathological features. Additionally, we genotyped the telomerase reverse transcriptase gene promoter single nucleotide polymorphism rs2853669 (T>C) located at -245 position. We observed the presence of the TERT promoter mutation in four patients, one exhibited the c.-124:C>T and three the c.-146:C>T. No association between TERT mutation status and clinicopathological features could be identified. The analysis of the rs2853669 showed that variant C was present in 22.8 % of the cases. In conclusion, we showed for the first time that TERT promoter mutations occur in a small subset (~3 %) of testicular germ cell tumors.
- Impact of EGFR genetic variants on glioma risk and patient outcomePublication . Costa, BM; Viana-Pereira, M; Fernandes, R; Costa, S; Linhares, P; Vaz, R; Pinheiro, C; Lima, J; Soares, P; Silva, A; Pardal, F; Amorim, J; Nabiço, R; Almeida, R; Alegria, C; Pires, MM; Pinheiro, C; Carvalho, E; Oliveira, P; Lopes, JM; Reis, RMBACKGROUND: The epidermal growth factor receptor (EGFR) regulates important cellular processes and is frequently implicated in human tumors. Three EGFR polymorphisms have been described as having a transcriptional regulatory function: two single-nucleotide polymorphisms in the essential promoter region, -216G/T and -191C/A, and a polymorphic (CA)(n) microsatellite sequence in intron 1. We aimed to elucidate the roles of these EGFR polymorphisms in glioma susceptibility and prognosis. METHODS: We conducted a case-control study with 196 patients with glioma and 168 cancer-free controls. Unconditional multivariate logistic regression models were used to calculate ORs and 95% confidence intervals. A Cox regression model was used to evaluate associations with patient survival. False-positive report probabilities were also assessed. RESULTS: None of the EGFR -216G/T variants was significantly associated with glioma risk. The -191C/A genotype was associated with higher risk for glioma when the (CA)(n) alleles were classified as short for ≤16 or ≤17 repeats. Independently of the (CA)(n) repeat cutoff point used, shorter (CA)(n) repeat variants were significantly associated with increased risk for glioma, particularly glioblastoma and oligodendroglioma. In all tested models with different (CA)(n) cutoff points, only -191C/A genotype was consistently associated with improved survival of patients with glioblastoma. CONCLUSIONS: Our findings implicate EGFR -191C/A and the (CA)(n) repeat polymorphisms as risk factors for gliomas, and suggest -191C/A as a prognostic marker in glioblastoma. IMPACT: Our data support a role of these EGFR polymorphisms in determining glioma susceptibility, with potential relevance for molecularly based stratification of patients with glioblastoma for individualized therapies
- mTOR pathway overactivation in BRAF mutated papillary thyroid carcinomaPublication . Faustino, A; Couto, JP; Pópulo, H; Rocha, AS; Pardal, F; Cameselle-Teijeiro, JM; Lopes, JM; Sobrinho-Simões, M; Soares, PCONTEXT: There are several genetic and molecular evidences suggesting dysregulation of the mammalian target of rapamycin (mTOR) pathway in thyroid neoplasia. Activation of the phosphatidylinositol-3-kinase/AKT pathway by RET/PTC and mutant RAS has already been demonstrated, but no data have been reported for the BRAF(V600E) mutation. OBJECTIVE: The aim of this study was to evaluate the activation pattern of the mTOR pathway in malignant thyroid lesions and whether it may be correlated with known genetic alterations, as well as to explore the mechanisms underlying mTOR pathway activation in these neoplasias. RESULTS: We observed, by immunohistochemical evaluation, an up-regulation/activation of the mTOR pathway proteins in thyroid cancer, particularly in conventional papillary thyroid carcinoma (cPTC). Overactivation of the mTOR signaling was particularly evident in cPTC samples harboring the BRAF(V600E) mutation. Transfection assays with BRAF expression vectors as well as BRAF knockdown by small interfering RNA revealed a positive association between BRAF expression and mTOR pathway activation, which appears to be mediated by pLKB1 Ser428, and emerged as a possible mechanism contributing to the association between BRAF mutation and mTOR pathway up-regulation. When we evaluated the rapamycin in the growth of thyroid cancer cell lines, we detected that cell lines with activating mutations in the MAPK pathway show a higher sensitivity to this drug. CONCLUSIONS: We determined that the AKT/mTOR pathway is particularly overactivated in human cPTC harboring the BRAF(V600E) mutation. Moreover, our results suggest that the mTOR pathway could be a good target to enhance therapy effects in certain types of thyroid carcinoma, namely in those harboring the BRAF(V600E) mutation.
- Mutation analysis of B-RAF gene in human gliomas.Publication . Basto, D; Trovisco, V; Lopes, JM; Martins, A; Pardal, F; Soares, P; Reis, RMThe RAS/RAF/MEK/ERK kinase pathway is pivotal in the transduction of mitogenic stimuli from activated growth factor receptors, which regulates cell proliferation, survival, and differentiation. Up-regulation of this pathway due to RAS mutations is found in approximately 30% of human tumors. Recently, activating mutations of B-RAF were identified in a large proportion of human cancers. Gliomas are the most frequent primary central nervous system tumors and the molecular mechanisms that underlie the development and progression of these tumors are far from being completely understood. The purpose of this study was to clarify the incidence of B-RAF mutations and their possible relation with tumor progression in a series of 82 human gliomas, including 49 astrocytic and 33 oligodendroglial tumors. The analysis of B-RAF hotspot regions, exons 11 and 15, showed presence of B-RAF mutations in only 2 out of 34 (6%) glioblastomas, and absence in the remaining histological types. Both mutations were located in the hotspot residue 600 (V600E) at exon 15, which leads to constitutive B-RAF kinase activity. These data suggest that activating mutations of B-RAF are not a frequent event in gliomas; nevertheless, when present they are associated with high-grade malignant lesions.